

Geometry 1

- This Slideshow was developed to accompany the textbook
> Larson Geometry
$>$ By Larson, R., Boswell, L., Kanold, T. D., \& Stiff, L.
> 2011 Holt McDougal
- Some examples and diagrams are taken from the textbook.

Slides created by

Richard Wright, Andrews Academy

1.1 Identify Points, Lines, and Planes

How is it named?

1.1 Identify Points, Lines, and Planes

How is it named?

What is it like?
No Thickness
Goes forever
Straight
1 Dimension
Through any two points there is exactly one line.

1.1 Identify Points, Lines, and Planes

1.1 Identify Points, Lines, and Planes

- Give two other names for $\overleftrightarrow{B D}$
- Give another name for plane \mathcal{T}
- Name three collinear points
- Name four coplanar points

1.1 Identify Points, Lines, and Planes

How is it named?

1.1 Identify Points, Lines, and Planes

How is it named?
If two rays have the same endpoint and go in opposite directions, they are called opposite rays.

1.1 Identify Points, Lines, and Planes

- Give another name for $\overline{P R}$
- Name all rays with endpoint Q
- Which of these rays are opposite rays?

The intersection of two lines is a point.

RP
QP, QR, QT, QS
QT and QS; QP and QR

1.1 Identify Points, Lines, and Planes

- The intersection of two planes is a line.

1.1 Identify Points, Lines, and Planes

- Sketch a plane and two intersecting lines that intersect the plane at separate points.
- Sketch a plane and two intersecting lines that do not intersect the plane.
- Sketch a plane and two intersecting lines that lie in the plane.

1.1 Identify Points, Lines, and Planes

- 5 \#1, 4-38 even, 44-58 even $=27$ total

1.1 Grading and Quiz

- 1.1 Answers
- 1.1 Homework Quiz

1.2 Use Segment and Congruence

- Postulate-Rule that is accepted without proof
- Theorem - Rule that is proven Ruler Postulate

Any line can be turned into a number line

1.2 Use Segment and Congruence

How is it named?
Find $A B$

$A B=3-(-1)=4$

1.2 Use Segment and Congruence

1.2 Use Segment and Congruence

Segment Addition Postulate
If B is between A and C, then $A B+B C=A C$
If $A B+B C=A C$, then B is between A and C

- Find CD

42

$$
\begin{aligned}
& C D+D E=C E \\
& C D+17=42 \\
& C D=25
\end{aligned}
$$

1.2 Use Segment and Congruence

Graph $X(-2,-5)$ and $Y(-2,3)$.

- Find XY .

$X Y=3-(-5)=8$

1.2 Use Segment and Congruence

1.2 Use Segment and Congruence

- 12 \#4-36 even, 37-45 all = 26 total

1.2 Grading and Quiz

- 1.2 Answers
- 1.2 Homework Quiz

1.3 Use Midpoint and Distance Formulas

What is it?			What is it like?Very middle of the
Part of a Segment			
Point that divides the segment into two congruent segments.			
M is the midpoint of $\overline{A B}$	$\overline{A M} \cong \overline{M B}$		
What are some examples?			Segment Bisector is something that intersects a segment at its midpoint.

1.3 Use Midpoint and Distance Formulas

- $\overline{M O}$ bisects $\overline{N P}$ at Q . If $\mathrm{PQ}=22.6$, find PN .

- Point S is the midpoint of $\overline{R T}$. Find ST .

$$
\begin{aligned}
& P Q=1 / 2 P N \\
& 22.6=1 / 2 P N \\
& P N=45.2 \\
& 5 x-2=3 x+8 \\
& 2 x-2=8 \\
& 2 x=10 \\
& x=5 \\
& S T=3(5)+8=23
\end{aligned}
$$

1.3 Use Midpoint and Distance Formulas

Midpoint Formula

$$
\text { Midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

- Find the midpoint of $\mathrm{G}(7,-2)$ and $\mathrm{H}(-5,-6)$
$((7+-5) / 2,(-2+-6) / 2)=(1,-4)$

1.3 Use Midpoint and Distance Formulas

- The midpoint of $\overline{A B}$ is $\mathrm{M}(5,8)$. One endpoint is $\mathrm{A}(2,-3)$. Find the coordinates of endpoint B .
$(5,8)=((x+2) / 2,(y+-3) / 2)$
x-coords: $5=(x+2) / 2 \rightarrow 10=x+2 \rightarrow x=8$
y-coords: $8=(y-3) / 2 \rightarrow 16=y-3 \rightarrow y=19$
$(8,19)$

1.3 Use Midpoint and Distance Formulas

Distance Formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

- What is PQ if $\mathrm{P}(2,5)$ and $\mathrm{Q}(-4,8)$?
- 19 \#2, 4, 6, 10-20 even, 24, 26, 28, 32, 36, 38, 42, 44, 48, 54-64 all = 29 total
- Extra Credit 22\#2, 8

$$
\begin{aligned}
& \mathrm{PQ}=\mathrm{V}\left((-4-2)^{2}+(8-5)^{2}\right) \\
& \mathrm{PQ}=\mathrm{V}\left((-6)^{2}+(3)^{2}\right) \\
& \mathrm{PQ}=\mathrm{V}(36+9) \\
& \mathrm{PQ}=\mathrm{V} 45=3 \mathrm{~V} 5 \approx 6.71
\end{aligned}
$$

1.3 Grading and Quiz

- 1.3 Answers
- 1.3 Homework Quiz

1.4 Measure and Classify Angles

1.4 Measure and Classify Angles

Protractor Postulate
A protractor can be used to measure angles

How is it named?

1.4 Measure and Classify Angles

- Classifying Angles
> Acute
- Less than 90°
$>$ Right
- 90°
$>$ Obtuse
- More than 90°
$>$ Straight
- 180°

1.4 Measure and Classify Angles

- Find the measure of each angle ând classify.
$>\angle \mathrm{DEC}$
$>\angle \mathrm{DEA}$
$>\angle C E B$
$>\angle \mathrm{DEB}$

$$
\begin{aligned}
& \angle \mathrm{DEC}=90 \text { right } \\
& \angle \mathrm{DEA}=180 \text { straight } \\
& \angle \mathrm{CEB}=25 \text { acute } \\
& \angle \mathrm{DEB}=115 \text { obtuse }
\end{aligned}
$$

1.4 Measure and Classify Angles

- Name all the angles in the diagram.
- Which angle is a right angle?

$\angle P Q R, \angle P Q S, \angle R Q S ; \angle P Q S$ is a right angle .

1.4 Measure and Classify Angles

Angle Addition Postulate

If P is in the interior of
$\angle R S T$, then
$m \angle R S T=m \angle R S P+m \angle P S T$

- If $m \angle R S T=72^{\circ}$, find $\mathrm{m} \angle \mathrm{RSP}$ and $\mathrm{m} \angle \mathrm{PST}$

$2 x-9+3 x+6=72$
$5 x-3=72$
$5 x=75$
$x=15$
$\mathrm{m} \angle \mathrm{RSP}=2(15)-9=21$
$\mathrm{m} \angle \mathrm{PST}=3(15)+6=51$

1.4 Measure and Classify Angles

1.4 Measure and Classify Angles

- Identify all pairs of congruent angles in the diagram.
- In the diagram, $\mathrm{m} \angle \mathrm{PQR}=130, \mathrm{~m} \angle \mathrm{QRS}=84$, and $\mathrm{m} \angle \mathrm{TSR}=121$. Find the other angle measures in the diagram.

$\angle \mathrm{T} \cong \angle \mathrm{S}, \angle \mathrm{P} \cong \angle \mathrm{R}$
$\mathrm{m} \angle \mathrm{PTS}=121, \mathrm{~m} \angle \mathrm{QPT}=84$

1.4 Measure and Classify Angles

Angle Bisector is a ray that divides an angle into two angles that are congruent.

- $\overrightarrow{M N}$ bisects $\angle \mathrm{PMQ}$, and $\mathrm{m} \angle \mathrm{PMQ}=122^{\circ}$. Find $\mathrm{m} \angle \mathrm{PMN}$.

- 28 \#4-26 even, 30 , 34-42 even, $48,50,52,56,60,64-72$ even $=28$ total

1.4 Grading and Quiz

- 1.4 Answers
- 1.4 Homework Quiz

1.5 Describe Angle Pair Relationships

What are examples?

1.5 Describe Angle Pair Relationships

Complementary Angles
Two angles whose sum is 90°
Supplementary Angles
Two angles whose sum is 180°

- Complementary and Supplementary Angles do not have to be adjacent

Both the pairs are supplementary

1.5 Describe Angle Pair Relationships

- In the figure, name a pair of > complementary angles,
$>$ supplementary angles, $>$ adjacent angles.

- Are $\angle \mathrm{KGH}$ and $\angle \mathrm{LKG}$ adjacent angles?
- Are $\angle \mathrm{FGK}$ and $\angle \mathrm{FGH}$ adjacent angles? Explain.

Complementary: $\angle \mathrm{FGK}$ and $\angle \mathrm{GKL}$
Supplementary: $\angle \mathrm{HGK}$ and $\angle \mathrm{GKL}$
Adjacent: $\angle \mathrm{FGK}$ and HGK

No, they do not have a common vertex
No, they are inside of each other

1.5 Describe Angle Pair Relationships

- Given that $\angle 1$ is a complement of $\angle 2$ and $\mathrm{m} \angle 2=8^{\circ}$, find $\mathrm{m} \angle 1$.
- Given that $\angle 3$ is a supplement of $\angle 4$ and $\mathrm{m} \angle 3=117^{\circ}$, find $\mathrm{m} \angle 4$.
$8+\mathrm{x}=90 \rightarrow \mathrm{x}=82$
$117+y=180=63$

1.5 Describe Angle Pair Relationships

- $\angle \mathrm{LMN}$ and $\angle \mathrm{PQR}$ are complementary angles. Find the measures of the angles if $\mathrm{m} \angle \mathrm{LMN}=(4 \mathrm{x}-2)^{\circ}$ and $\mathrm{m} \angle \mathrm{PQR}=(9 \mathrm{x}+1)^{\circ}$.

$$
\begin{aligned}
& (4 x-2)+(9 x+1)=90 \rightarrow 13 x-1=90 \rightarrow 13 x=91 \rightarrow x=7 \\
& m \angle L M N=4(7)-2=26 \\
& m \angle P Q R=9(7)+1=64
\end{aligned}
$$

1.5 Describe Angle Pair Relationships

1.5 Describe Angle Pair Relationships

What are examples?

1.5 Describe Angle Pair Relationships

- Do any of the numbered angles in the diagram below form a linear pair?
- Which angles are vertical angles?

No, no 2 of them form straight lines
$\angle 1$ and $\angle 4, \angle 2$ and $\angle 5, \angle 3$ and $\angle 6$

1.5 Describe Angle Pair Relationships

- Two angles form a linear pair. The measure of one angle is 3 times the measure of the other. Find the measure of each angle.
$x+3 x=180 \rightarrow 4 x=180 \rightarrow x=45 \rightarrow$ angles are 45 and 135

1.5 Describe Angle Pair Relationships

- Things you can assume in diagrams.
> Points are coplanar
$>$ Intersections
$>$ Lines are straight
> Betweenness
- Things you cannot assume in diagrams
> Congruence unless stated
> Right angles unless stated

1.5 Describe Angle Pair Relationships

- 38 \#4-28 even, 32-44 even, $54,58,60,62=24$ total
- Extra Credit 41 \#2, 6

1.5 Grading and Quiz

- 1.5 Answers
- 1.5 Homework Quiz

You get a Polly gone

1.6 Classify Polygons

Convex

All angles poke out of shape.
A line containing a side does NOT go through the middle of the shape.

Concave

Not convex. (There's a "cave".)

1.6 Classify Polygons

Equilateral

All sides are the same length

Equiangular

All angles are the same measure

1.6 Classify Polygons

Regular Polygon

Equilateral and Equiangular

1.6 Classify Polygons

Number of sides	Type of Polygon
3	Triangle
4	Quadrilateral

1.6 Classify Polygons

- Sketch an example of a convex heptagon.
- Sketch an example of a concave heptagon.
- Classify the polygon shown.

Regular quadrilateral

1.6 Classify Polygons

- The Pentagon Building is a regular pentagon. If two of the angles are $(2 x-14)^{\circ}$ and $(3 x-75)^{\circ}$. Find the measure of each angle.
- 44 \#4-36 even, 40, 44-54 even
= 24 total

$2 x-14=3 x-75$
$-14=x-75$
$61=x$
Angles are 2(61) $-14=108$

1.6 Grading and Quiz

- 1.6 Answers
- 1.6 Homework Quiz

1.7 Find Perimeter, Circumference, and Area
 Perimeter (P)
 Distance around a figure

Circumference (C)
Perimeter of a circle
Area (A)
Amount of surface covered by a figure
1.7 Find Perimeter, Circumference, and Area

Square	s
Side s	
$\bullet \mathrm{P}=4 s$	
$\bullet \mathrm{~A}=s^{2}$	

$\frac{\text { Triangle }}{\text { sides } a, b, c}$ base b, height h

- $P=a+b+c$

- $A=1 / 2 b h$

$\frac{\text { Circle }}{\text { diameter } d}$
radius r
-C $=2 \pi r$
- $A=\pi r^{2}$

1.7 Find Perimeter, Circumference, and Area

- Find the area and perimeter (or circumference) of the figure. If necessary, round to the nearest tenth.

Rectangle: $A=13(5.7)=74.1 \mathrm{~m}^{2} ; P=2(13)+2(5.7)=37.4 \mathrm{~m}$
Square: $A=(1.6)^{2}=2.6 \mathrm{~cm}^{2} ; P=4(1.6)=6.4 \mathrm{~cm}$
Circle: $A=\pi(2)^{2}=4 \pi=12.6 \mathrm{yd}^{2} ; P=2 \pi 2=4 \pi=12.6 \mathrm{yd}$

1.7 Find Perimeter, Circumference, and Area

- Describe how to find the height from F to $\overline{E G}$ in the triangle.
- Find the perimeter and area of the triangle.

- What if each side of the triangle were twice as long, would it cover twice as much area?

The height is perpendicular to the base, so it hits EG at $(1,3)$. Distance from $(1,3)$ to $(7,3)=6$

Perimeter: find the lengths of each side
EG = 4
$\mathrm{FG}=\mathrm{V}\left((7-1)^{2}+(3-2)^{2}\right)=\mathrm{V}(36+1)=\mathrm{V} 37=6.08$
$E F=V\left((7-1)^{2}+(3-6)^{2}\right)=V(36+9)=V 45=6.71$
$P=4+6.08+6.71=16.79$
Area: $1 / 2(4)(6)=12$
No, the area would be four times as big

1.7 Find Perimeter, Circumference, and Area

- The area of a triangle is 64 square meters, and its height is 16 meters. Find the length of its base.
- 52 \#2-42 even, 46,48 -52 all = 27 total
- Extra Credit 56 \#2, 6
$A=1 / 2 b h$
$64=1 / 2 b(16)$
$64=8 b$
b $=8$

1.7 Grading and Quiz

- 1.7 Answers
- 1.7 Homework Quiz

1.Review

CHAPTER TEST

Use the diagram to decide whether the statement is true or false.

1. Point A lies on line m,
2. Point D lies on line n
3. Points R, C, E, and Qare coplanar.
4. Points C, E, and B are collinear.
5. Another name for plane Gis plane QEC.

Find the indicated length.

$$
\text { 2. Find } x z
$$

$\begin{array}{lll}\text { 9. } \pi 3,4) \text { and } W(2,7) & \text { 10. } C(5,10) \text { and } D(6,-1) & \text { 11. } M(-8,0) \text { and } N(-1,3)\end{array}$
12. The midpoint of $\overline{A B}$ is $M(9,7)$. One endpoint is $A(3,9)$. Find the coordinates of endpoint R.
13. Line r bisects $\overline{C D}$ at point $M, C M=3 x$, and $M D=27$. Find $C D$.

In Exercises 14 and 15, use the dingram.
14. Trace the diagram and extend the rays. Use a protractor to measure $\angle G H I$. Classify it as acute. obtuse, right, or straight.

15. Given $m \angle K H I=90^{\circ}$, find $m \angle L H I$.
16. The measure of $\angle Q R T$ is 154^{4}, and $\overrightarrow{R S}$ bisects $\angle Q R T$. What are the measures of $/ O R \mathrm{~S}$ and $/ \mathrm{SR}$ I?

